А сейчас будет работа одной семиклассницы с олимпиады Эйлера. По-мойму, гениально. Покрасим 49 колпаков В цвета ночного неба и угля. А 50 (в тайне от мудрецов) Покрасим в ярко-белые цвета. В круг посадили сотню мудрецов, Хотя не 100, а 99. Всем им своих не видно колпаков. И лишь друг друга они взглядом могут мерить. Легко понять, что 49 мудрецов, Что восседают в своих чёрных колпаках, Все видят чёрных 48 колпаков, И 50 в иных совсем цветах. И получается, что этим мудрецам, Огромно повезло, ведь без труда, Из них здесь каждый может сам Определить свой цвет у колпака. А что же делать остальным всем мудрецам? Пускай считают, сколько село рядом Людей, чьи колпаки похожи по цветам, Отдельно каждый цвет. Их выбор - больший из обоих колпаков. И из мыслителей, что в белых колпаках, Хотя бы половина угадает. Ведь если люди рядом в одинаковых цветах, Для всех такого цвета меньше не бывает. И если кто-то написал неверный цвет, Другой мудрец всё видит по-иному. И будет 25 их или нет, Не меньше половины по-любому. В итоге, 49 мудрецов, И 25, а может больше даже Напишут верно цвет у колпаков. Надеюсь, всё решение - не лажа. Прошу прощения за грубоватый слог, За рифму, что так часто повторялась, И коль поэт решить задачу всё ж не смог, Надеюсь, Вы хотя бы посмеялись?

Теги других блогов: решение задача олимпиада Эйлера